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PROBABILITY MODELING AND ESTIMATION OF RISK 

MEASURES FOR FIRE LOSS SEVERITY IN PAKISTAN: AN 

APPLICATION OF EXTREME VALUE THEORY 

 

 Abstract. Extreme events are increasing in the insurance and financial 

markets, causing large losses and ultimately huge insurance claims. Commercial fire 

loss severity has the largest value among the major insurance claims. The goal of our 

study is modeling the commercial fire loss severity and estimating the risk of extreme 

fire losses by using Extreme Value Theory (EVT). In the present study, we utilize the 

EVT (point over threshold modeling) for modeling the tail of fire loss data. We find 

that the Generalized Pareto distribution (GPD) gives more satisfactory fit to 

commercial fire loss data as compared to other parametric distributions including 

exponential, Pareto, gamma, logistic and generalized extreme value (GEV) 

distribution. In the empirical study, we determine the peaks over threshold of the GPD 

with the help of Mean Excess plots and Hill plots. We also estimate the risk measures 

like value at risk (VaR) and expected shortfall (ES). These estimates are helpful for 

pricing and risk management of non-insurance companies for their policy implications. 

Keywords: fire loss, extreme value distribution, risk measures, value at risk, 

expected shortfall. 
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 1.  Introduction 
 In non-life insurance sector, only a few claims made by a portfolio often make 

majority of the compensations paid by the company. Among the major insurance 

claims, commercial fire insurance has the largest value. Therefore, modeling the tail 

behavior of fire loss severity is of great concern for pricing and risk management (Lee, 

2012). Risk management is a process of thinking and identifying the all possible risks 

and problems before they happen and making decisions to control the risk or minimize 

its impact. It is a great challenge for a risk manager to implement the models for risk 

management and measure the consequences of damaging events.  
Extreme value theory (EVT) is a statistical methodology which offers a 

framework for modeling the fire loss severities and their associated tail probabilities. 

An important application of the extreme value theory was introduced by the 

Longin(1996). He used extreme value theory to investigate the tail behavior of the 

extremes in the US stock market. He fitted generalized extreme value distribution to 

the data and concluded that the S&P 500 daily return data can also be characterized by 

the Frechet distribution which is a special case of generalized extreme value 

distribution. Beirlent (1992) used extreme value theory to model large claims. 

Zajdenweber (1996) modeled the claims of French insurance union data by using 

extreme value theory. Rootzen and Tajvidi (2000) used extreme value theory for fitting 

of wind storm losses. Hogg and Klugman (1984) fitted a truncated Pareto distribution 

to the loss data. Superiority of GPD could be viewed from the studies like, Resnik 

(1997), McNeil and Saladin (1997), McNeil (1999), Cebrián et al. (2003), Jondeau and 

Rockinger (2003), Beirlant et al. (2004), Lee and Fung (2010), Singh et al. (2011) and 

Wo-chiang lee (2012), in which they suggested that it is better to use Generalized 

Pareto distribution to extreme fire loss data.  Extreme value theory is also used to 

estimate the risk measures like Value at Risk (VaR) and Expected Shortfall (ES). The 

risk managers can use the risk measures to assess the risk and make sure that their 

financial institute will survive after an extreme damaging event by setting the margin 

requirements.  Cerovic (2014) showed that the VaR calculated by EVT is better than 

the econometric evaluations. Fernandez (2003) analyzed different ways of computing 

the VaR for different stock markets and concluded that the VaR based on EVT is the 

best one. Similarly, the following studies also advocate the use of EVT for the 

calculations of above risk measures such as Walls and Zhang (2005), Cheong vee et al. 

(2014) and Uppal (2013). 

The next of the paper is organized as follow. Section 2 represents the methods 

and material, section 3 represents results and discussion, last section gives the 

concluding remarks and recommendation for further aspects of the study. 
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2.  Methods and Material 

2.1. Extreme Value Theory (EVT) 

First of all, the application of extreme value theory (EVT) was introduced by 

Gumble (1958). He developed the procedures for statistical estimation and presented 

different applications of extreme value theory in engineering and science. Now a days, 

EVT is also frequently used in financial modelling, risk management, insurance, 

telecommunication, meteorology and hydrology. In financial sector, EVT is used to 

identify and quantify the rare market and credit risks. EVT provides the basis of the 

procedures which are used in non-normal (Non-Gussian) market situation. It helps the 

risk manager to provide the models for risk management that are applicable in rare and 

damaging events. Extreme value theory is applicable for modelling the financial 

distributions like distribution of insurance claims, distribution of credit loss, 

distribution of returns and distribution of profit and loss. Extreme value theory 

provides a framework for modelling the rare or extreme events such as large insurance 

claims and market crashes by using statistical laws. 

In extreme value theory, two basic methods are widely used. The oldest 

method is block maxima (BM) method, which was introduced by Gumble in 1958. In 

this method time series data is divided in non-overlapping groups or subsamples and 

then largest observation (maxima) is collected from each subsample. Block maxima 

follow Gumbel, Frechet or Weibull. This method involves two major drawbacks. 

Firstly, the largest observation is collected from the subsample or group so it drops 

various high extreme observations and retains some lower observation. Secondly, 

precision of the estimators is reduced because subsamples are used in this method.The 

modern group of methods is peaks over threshold (POT) method. The POT method 

was developed by the Pickands in 1975. This method is preferable when there is no 

large data or limiting data for extreme value analysis. In this method, all the high 

observations that exceed a high threshold are modelled. It is the most useful method in 

modelling the extreme events.  The advantage of POT method over the block maxima 

method is that it uses all extreme observations present in the data. The probability 

distribution of the observations exceeding the chosen threshold approximately follows 

GPD (see Pickands 1975). It means, if enough data are available above threshold then 

we can use GPD as primary tool for modelling the tail of loss distribution.  In the 

present study, we investigate the distribution of fire loss severity using POT method. 

Let the random variable "x"has cumulative distribution function F(x)and let the 

threshold value is denoted by "u" which lies at the right tail of the distribution. 

Threshold value is said to be high if it lies close to the right end point. The probability 

that a random variable "x" lies between "u" and "u + v" is F( u +  v ) – F( u ) such 

that v > 0. The probability will be (1 −  F ( u )) if values of "x" being greater than the 
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threshold value "u". Fu(v) can be defined as the conditional probability that random 

variable lies between "u" and "u + v" given that x > 𝑢. 

Fu(v) = Prob[x − u ≤ v/x > u] 
                                                               

=
F(v + v) − F(u)

1 − F(u)
                                                                          (2.1)        

 

The distribution of exceedances shows the probability of an event that exceeds 

threshold value "u" by a non zero value. The most critical problem in applying POT 

method is the selection of an appropriate threshold from where the tail begins of a 

distribution. By choosing a low value of threshold some of the observations from the 

center of the distribution are also included in the sample and the variance of the tail 

index becomes smaller (more precise) but biased. On the other hand, a high value of 

threshold results in a few exceedances that reduces the bias but it gives a large estimate 

of variance and the estimator becomes less precise. The most widely used graphical 

methods are  Hill plot and Mean Excess plot used to choose an appropriate threshold. 

Let  x1 > x2 > ⋯ . > xn be the order statistic of a random variable. The Hill 

estimator of the tail index based on (k+1) order statistic is gives as: 

 

                                     Hk,n =
1

k
∑{lnxi,n − lnxk+1,n}

k

i=1

                                        (2.2) 

 

Where (k+1) are the number of upper order statistic and "n" is the sample size 

used in the estimation. Hill plot is used to choose the shape parameter estimate and 

threshold value of a data set. It is obtained that such estimates of the shape parameter 

are plotted as the function of the threshold value or k upper order statistics. The hill 

plot gives the maximum likelihood estimates of the shape parameter at different 

threshold points. The threshold value should be chosen from the tail region where the 

estimates of the shape parameter are approximately constant or where the graph looks 

like stable.  

Davidson and Smith (1990) introduced the Mean Excess plot which is the plot 

of mean excess function (MEF). The MEF is simply the conditional mean of the 

excesses over the threshold value u and can be defines as: 

(u) =
1

nu
∑(xi − u)                                                                                            (2.3)

nu

i=1
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Where "u" is the threshold value and nudenotes the total number of values 

which exceed the values resulting increment in threshold value. After threshold 

determination, the conditional distribution Fu(v) defined in Equation (2.1). 

Convergence to GPD which usually expressed as three parameter distribution. We can 

determine the limit Fu(v) ≈ Gu(v) as u → ∞ (Balkema (1974) and Pickand (1975)). 

The distribution function of the three parameter GPD can be expressed as:  

 

Gu(v) = 1 − (1 + ε
v

γ
)

−
1

ε
       if     ε ≠ 0                                                                 (2.4)  

 

Where "γ" is the scale parameter and "ε" is the shape parameter indicates the 

heaviness of the tail. The value of "ε"increases if the tail of the distribution becomes 

heavier (longer tailed).The probability that random variable exceeds the threshold 

value is  1 − F(u) and the probability that x > u + v given that x > u is1 − Gu(v), so 

the unconditional probability thatX > u + v can be obtained as: 

 

F(x > u + v) = [1 − F(u)] ∙ [1 − G(v)] 
 

[1 − F(u)] can be estimated by the empirical estimator(
k

n
)(Lee (2012)), where 

n is the total number of observations and k is the number of observations exceeding 

from the threshold value u. Hence, the unconditional probability that the x > u + v is: 

 

nu

n
[1 − G(v)] =

k

n
[1 − {1 − (1 + ε

v

γ
)

−
1

ε
}] 

        =
k

n
[(1 + ε

v

γ
)]

−
1

ε
 

 

So the tail estimator for the cumulative distribution function can be defined as: 

 

                                                F(X) = 1 −
k

n
[(1 + ε

v

γ
)]

−
1

ε
                                    (2.5)   

 

2.2. Value at risk and expected shortfall 

 We can calculate the VaR of GPD, infact,  VaR is just like the quantile of a 
distribution corresponding to certain probability level "q". By the definition of 
VaR (for GPD): 
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F(VaR) = q 

q = 1 −
k

n
[1 + ε̂

VaR − u

γ
]

−
1

ε

 

k

n
[1 + ε

VaR − u

γ
]

−
1

ε

= 1 − q 

[1 + ε
VaR − u

γ
]

−
1

ε

=
n

k
(1 − q) 

1 + ε
VaR − u

γ
= [

n

k
(1 − q)]

−ε

 

ε
VaR − u

γ
= [

n

k
(1 − q)]

−ε

− 1 

                                          VaR = u +
γ

ε
[{

n

k
(1 − q)}

−ε

− 1]                                  (2.6) 

 Expected shortfall (ES) is an average loss given that your loss is greater than 

VaR (conditional value at risk). Indeed, the VaR only tells that your loss greater than 

some value which we call VaR with probability "p". It is unable to tell us how much 

greater. It may be any value which is greater than VaR. While expected shortfall is 

useful and giving extra information in the form of average of all possible loss given 

that the loss is greater than VaR. Expected shortfall is usually used in the field of 

financial risk management to find the market risk factor of a portfolio. At p% level, it 

may be defined as expected returns of the portfolio in the worst p% cases. For example, 

ES (0.1) is the expectation of the worst 10 cases out of 100 cases (Lee, 2012).By 

definition ES is defined as for confidence level “q”  

ESq = E(loss given that loss > VaRq). 

After solving the above conditional expectation, we get the following form for GPD. 

  ESq = VaRq +
γ + ε(VaRq − u)

1 − ε
 

ESq =
VaRq(1 − ε) + γ + ε(VaRq − u)

1 − ε
 

               ESq =
VaRq − εVaRq + γ + εVaRq − εu

1 − ε
 

ESq =
VaRq + γ − εu

1 − ε
 

                                                     ESq =
VaRq

1 − ε
+

γ − εu

1 − ε
                                                  (2.7)    
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3.  Results and Discussion 

 3.1. Data description 

 There are four hundred sixty five observations in our data set. The five years 

commercial fire loss data used in this study is collected from the regional office of 

Rescue 1122 Rawalpindi. Table 1 shows the number of loss events, percentage of the 

loss events including sum and percentage of loss amount. 

 
Table 1. Frequency of commercial fire loss data 

Figure1 is visually describe fire losses in scatter plot, which indicates right skewness 

due to extreme losses along with the value of Skewness coefficient in Table 2. Results 

of the Table 2 also indicates that the series are highly positive are right skewed. It 

implies that the distribution of the data is heavy tail on right side. Kurtosis coefficient 

value is also very high which make it different from mesokurtic shape (Bell shape). In 

the present case, it has high peak and decline rapidly with heavy right tail. Table 2 

reports the summary statistic of the fire loss data. 

Range of Loss  

amount (Rs.) 

Number of 

loss events 

Percentage of 

loss events 

Sum of loss  

amount (Rs.) 

Percentage of  

loss amount 

0 – 100000 204 43.78 8013300 1.84 

100001—200000 53 11.37 8077250 1.85 

200001—400000 63 13.52 18228700 4.18 

400001—1000000 79 16.95 49128000 11.26 

1000001—5000000 50 10.73 104962500 24.07 

Over 5000000 17 3.65 247737000 56.80 

Total 465 100 436146750 100 
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   Figure 1.  Scatter plot of the fire loss data 

 

 Table 2. Summary statistics of the fire loss data 

 

  

3.2. Selection of the probability model for commercial fire loss data 

 Practically it is not possible to consider all parametric probability distributions 

in a single study. However, one solution could be to consider a general class of 

distributions for fire loss data. Keeping the hope that these distributions would be 

flexible enough and conform the underlying data of fire loss severity in a reasonable 

way (Lee, 2012). We considered different parametric distributions like exponential, 

Pareto, gamma, logistic, generalized extreme value (GEV) and Generalized Pareto 

distribution (GPD) in this study. These distributions are selected because of their wide 

applications in the insurance and finance. The first step in our study is to explore the 

data. For exploratory data analysis we use the probability density plot and quantile-

quantile (Q-Q) plot for each of the above distributions. These graphs help us to assess 

the goodness of fit of the parametric distributions at initial stage.  In most of the 

financial problems the data series are fat tailed, so the Q-Q plot is more suitable for 

such series. The graph should be linear if parametric distribution fits the data well.Q-Q 

plot also help us to detect the outliers in the data set. Chi-Square (𝜒2) test, 

N Mean S.D C.V. Skewness Kurtosis Min. Max. 

465 937950 3920700 4.1801 10.467 135.23 300 6.1×107 
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Kolmogorov-Simirnov (K-S) test and Anderson-Darling (A-D) test for the goodness of 

fit and also conducted to find which distribution is best fitted for fire loss data. For the 

verification of the results we calculated the RMSE and Bias for each distribution. 

  

 

 

 

 

  (a)                     (b) 

 

 

  

   

 

(c)        (d) 

 

 

 

 

    

 

  

(e)        (f) 

Figure 2(a-f).  Probability density function (PDF) plots for fire loss data of 

different distributions 
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(a)     (b) 
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                                      (e)     (f) 

Figure 3(a-f).  Quantile-Quantile (Q-Q) plots for fire loss data of different 

distributions 
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 Figure 2(a-f) and Figure 3(a-f) show the poor fit of exponential, Pareto, 

gamma and logistic distribution, and better fit for GEV and GPD for fire loss 

data.  Table 3 reports the parametric estimates of these fitted distributions. 
 

Table 3. Parametric estimation for fitted distribution 
 

  
 Now we apply chi-square goodness of fit test, K-S test and A-D test to find out 

the most appropriate distribution for fitting the fire loss data. By using Easy Fit 

software (Version), we calculated the test statistic values (using MLE) of above three 

tests for goodness of fit and selected the distribution having lowest value of test 

statistic. Table 4 lists the test statistic values along their ranks by using different tests 

of goodness of fit for underlying distributions.  

 

Table 4. Goodness fit results for different distributions 

 

 Table 4 shows that the GPD has least statistic value in all goodness of fit tests. 

So GPD is the best fitted model for fire loss data.  For the purpose of verification, we 

use RMSE and bias measures. So we calculate the RMSE and bias for each distribution 

and GPD is giving the best fit as compared to others because it has smaller value of 

RMSE and bias which are defined as: 

Distribution Location Parameter  Scale Parameter  Shape Parameter  

Exponential 𝛍 = 𝟏. 𝟎𝟔𝟔𝟐 - - 

Logistic 𝛍 = 𝟐. 𝟏𝟔𝟏𝟔 × 𝟏𝟎𝟔 𝛔 = 𝟗. 𝟑𝟕𝟗𝟓 × 𝟏𝟎𝟓 - 

Pareto - 𝛔 = 𝟑𝟎𝟎 𝛆 = 𝟎. 𝟏𝟔𝟐𝟕𝟓 

Gamma - 𝛔 = 𝟏. 𝟔𝟑𝟖𝟗 × 𝟏𝟎𝟕 𝛆 = 𝟎. 𝟎𝟓𝟕𝟐 

GEV 𝛍 = 𝟏. 𝟏𝟐𝟒𝟑 × 𝟏𝟎𝟓 𝛔 = 𝟐. 𝟎𝟎𝟔𝟑 × 𝟏𝟎𝟓 𝛆 = 𝟎. 𝟕𝟖𝟑𝟔 

GPD 𝛍 = 𝟑𝟎𝟒𝟔𝟐 𝛔 = 𝟐. 𝟑𝟑𝟒𝟕 × 𝟏𝟎𝟓 𝛆 = 𝟎. 𝟕𝟓𝟖𝟗 

Distribution Chi-square (𝝌𝟐)  

test 

K-S test A-D test 

Statistic Rank Statistic Rank Statistic Rank 

Exponential 581.86 4 0.3723 4 199.61 5 

Pareto 629.99 5 0.3575 3 98.959 3 

Gamma 1068.8 6 0.6164 6 264.88 6 

Logistic 229 3 0.3932 5 117.78 4 

GEV 27.901 2 0.1242 2 8.0473 2 

GPD 25.027 1 0.1180 1 6.0809 1 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥𝑖̂)

2𝑛
𝑖=1

𝑛 − 𝑘
                                         (3.1) 

𝐵𝑖𝑎𝑠 =
∑ (𝑥𝑖 − 𝑥𝑖̂)

𝑛
𝑖=1

𝑛 − 𝑘
                                                  (3.2) 

 

Where 𝑥𝑖 are the observed values, 𝑥𝑖̂ are the fitted values, "n" is the sample 

size and "k" is number of estimated parameters. By using R software (Version: ),  we 

calculate RMSE and bias of selected distributions at different sample sizes (50, 100 

and 200). 

Table 5. RMSE and Bias of the fitted distributions 

 

 Table 5 indicates that the GPD has lowest RMSE and bias at different sample 

sizes. So, in context of exploratory analysis, different goodness of fit tests and on the 

basis of RMSE and bias, we can say that the GPD is the best fitted model for the fire 

loss data. Threshold values and order statistics are taken on x-axis while on y-axis the 

values of shape parameter are shown in Figure 4. The threshold would be selected from 

the plot where we observe stability of the shape parameter. For more than one 

threshold, we can use mean excess plots. Mean excess plot also help us to depict the 

threshold. In Figure 5, the sample mean excesses are plotted against the threshold 

values. Threshold values (in millions) are taken on x-axis and mean excesses are taken 

on y-axis. The plot shows an upward slope which indicates the heavy tail of the sample 

data. In upward sloping, three segments can be seen. In first segment the value of 

threshold is almost 6.0×105 and in other two segments the threshold values are 

1.01×106and 1.95×106. 

Distribution 
Sample size 

n=50 n=100 n=200 

Exponential 
RMSE 5880895 3621402 2890814 

Bias 891970.5 329035.3 15467.5 

Pareto 
RMSE 4024990 3127567.8 2032971 

Bias 3513588 258233.3 2403371 

Gamma 
RMSE 5071554 2744707 2445375 

Bias 378826.4 254677.5 2386626 

Logistic 
RMSE 8724311 6467891.5 4498762 

Bias 752278 634589.8 538251.1 

GEV 
RMSE 2464638 1624977 1456378 

Bias 260519.5 139697.8 106740.1 

GPD 
RMSE 2398323 1232139 1114895 

Bias 241078.97 123292.3 81305.3 
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Figure 4.  Hill plot for fire loss data 

0 5 10 15 20

5
10

15
20

Threshold

Me
an

 E
xc

es
s

 

Figure 5.  Mean excess for fire loss data 

 

In Table 6, the value of  "𝜀" is fairly stable around the threshold value 6.0×105and have 

100 exceedances. Similarly in next two segments the two other threshold values are 

1.01×106and 1.95×106 where the value of 𝜀 is stable. 

 In Figure 6. we plot the cumulative distribution function of estimated GPD 

model and fire loss data above the three threshold values.  It also depicts that GPD 

model reasonably fit the fire loss data used in this study at three selected thresholds. 

 Now, we test the goodness of fit for GPD model at these threshold values by 

using Kolmogorov-Smirknove test and chi-square goodness of fit test.  
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The null hypothesis regarding fire loss data follow generalized Pareto distribution. The 

results of goodness of fit for GPD over different threshold values are summarized in 

Table 7. 

 

Table 6. Threshold values where the shape parameter of GPD is fairly  

 

Table 7 reveals the fact that the both K-S test and chi-square test does not reject H0. 

which means that fire loss data has a GPD distribution and it is good for model fitting. 

                  

 

 

 

 

 

 

Threshold value  

6.0×105 

Threshold value  

1.01×106 

Threshold value  

1.95×106 

𝜺 No. of 

excee-

dances 

Threshold 𝜺 No. of 

excee-

dances 

Threshold 𝜺 No. of 

excee-

dances 

Threshold 

1.101 101 5.9×105 1.053 67 8.5×105 0.950 37 1.90×106 

1.102 100 6.0×105 1.053 66 1.00×106 0.950 36 1.90×106 

1.102 99 6.0×105 1.054 65 1.02×106 0.950 35 2.00×106 

1.102 98 6.1×105 1.054 64 1.04×106 0.951 34 2.10×106 

Threshold value = 

6.0×105 

Threshold value = 

1.01×106 

Threshold value = 

1.95×106 

 
  

Figure 6:CDF plots of estimated GPD model and the fire loss data of above threshold 
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Table 7. Goodness of fit for GPD over threshold values 

 

 

 

 

 

 

 

 

 

 

 3.3. Calculation of risk measures 

 Table 8 reports the estimates of shape and scale parameters along with their 

standard error of GPD, number of exceedances and risk measures estimates at different 

confidence levels are also highlighted in Table 8. For example we observe that when 

the threshold is 6.0×105 then the number of exceedances is 100. The shape parameter is 

0.7898 with a standard error 0.1630 (given in parentheses) which indicates a heavy tail. 

The value at Risk (VaR) and expected shortfall(ES) are calculated at different 

confidence levels. Using a confidence level of 95%, the value of VaR. i.e. 

3.1019×106reveals that there is 5% probability that minimum loss would be equal to 

3.1019×106 or greater (gain) or 95% confident that the maximum loss would be equal 

to 3.1019×106 or less. We are 5% confident that the amount of extreme loss would 

increase the amount 3.1019×106 i.e. VaR. This quantity is unable to tell further how 

much greater than this VaR amount. To know about this, we use another quantitative 

and synthetic measure known as ES.  It tells us about the average loss given that the 

amount of loss is greater than VaR with certain probability level. It may be any value 

greater than VaR.ES is useful in the sense that it is giving extra information in the form 

of average of all possible loss given that the loss is greater than VaR. It is a good 

measure for risk management of portfolio. For example, ES (0.05) with confidence 

level of 95%, it may be defined as the expectation of the worst 5 cases out of 100 cases 

provided your loss is greater than VaR (0.05). 

 

Table 8.Value at risk and expected shortfall 

 No. of exceedances 

100 65 35 

Threshold value 6.0×105 1.01×106 1.95×106 

K-S test 

(p-value) 

0.09532 

(0.29856) 
0.07519 

(0.82241) 
0.13625 

(0.41098) 

Chi-square test 

(p-value) 

2.2417 

(0.89618) 
2.8009 

(0.83339) 
4.619 

(0.20192) 

 No. of exceedances 

100 65 35 

Threshold value 6.0×105 1.01×106 1.95×106 

Scaling parameter 9.40×105 8.312×105 9.73×105 
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 4. Conclusion 
 Fitting the tail of loss data has great concern in many applications of the 

finance and insurance. The estimates of the tail have great importance for the risk 

management. In our present study we determined the most appropriate distribution for 

modeling the extreme fire losses. We first executed the exploratory analysis by using 

probability density plot and quantile-quantile (Q-Q) plot of exponential, Pareto, 

gamma, logistic, generalized extreme value and generalized Pareto distribution.  Both 

plots revealed a poor fit of exponential and logistic distribution while other 

distributions fit the data much better especially the GPD and GEV distribution. We 

applied the chi-square test, Kolmogorov-Smirknove test and Anderson Darling test for 

goodness of fit to the fire loss data. All the tests for goodness of fit support the GPD as 

the best fitted distribution. We also verify our results by computing root mean square 

error and bias for each distribution and found that the GPD has minimum root mean 

square error and bias. So, we concluded that the GPD is the appropriate distribution for 

the fore loss distribution. For modeling the tail of fire loss data, we used the peaks over 

threshold method and determined the optimal thresholds by Hill estimator and Mean 

Excess plot.  We fitted the GPD over the thresholds and computed the value at risk and 

expected shortfall at different confidence levels over the high thresholds 6.0×105, 

1.01×106 and 1.95×106.These estimates would be helpful for pricing and risk 

management of non-insurance companies for their policy implications. For example, 

risk managers can use the risk measures to assess the risk and make sure that their 

financial institute will survive after an extreme damaging eventby setting the margin 

requirements. 
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